Sustained Spatial Attention in Touch: Modality-Specific and Multimodal Mechanisms
نویسندگان
چکیده
Sustained attention to a body location results in enhanced processing of tactile stimuli presented at that location compared to another unattended location. In this paper, we review studies investigating the neural correlates of sustained spatial attention in touch. These studies consistently show that activity within modality-specific somatosensory areas (SI and SII) is modulated by sustained tactile-spatial attention. Recent evidence suggests that these somatosensory areas may be recruited as part of a larger cortical network,also including higher-level multimodal regions involved in spatial selection across modalities. We discuss, in turn, the following multimodal effects in sustained tactile-spatial attention tasks. First, cross-modal attentional links between touch and vision, reflected in enhanced processing of task-irrelevant visual stimuli at tactually attended locations, are mediated by common (multimodal) representations of external space. Second, vision of the body modulates activity underlying sustained tactile-spatial attention, facilitating attentional modulation of tactile processing in between-hand (when hands are sufficiently far apart) and impairing attentional modulation in within-hand selection tasks. Finally, body posture influences mechanisms of sustained tactile-spatial attention, relying, at least partly, on remapping of tactile stimuli in external, visually defined, spatial coordinates. Taken together, the findings reviewed in this paper indicate that sustained spatial attention in touch is subserved by both modality-specific and multimodal mechanisms. The interplay between these mechanisms allows flexible and efficient spatial selection within and across sensory modalities.
منابع مشابه
Selective spatial attention in vision and touch: unimodal and multimodal mechanisms revealed by PET.
Two positron-emission tomography (PET) experiments explored the neural basis of selective spatial attention in vision and touch, testing for modality-specific versus multimodal activations due to attended side. In the first study, either light flashes or finger vibrations were presented bilaterally. Twelve healthy volunteers were scanned while sustaining covert attention on the left or right he...
متن کاملSpatial attention and crossmodal interactions between vision and touch.
In the present paper, we review several functional imaging studies investigating crossmodal interactions between vision and touch relating to spatial attention. We asked how the spatial unity of a multimodal event in the external world might be represented in the brain, where signals from different modalities are initially processed in distinct brain regions. The results highlight several links...
متن کاملAttentional selection of location and modality in vision and touch modulates low-frequency activity in associated sensory cortices
Selective attention allows us to focus on particular sensory modalities and locations. Relatively little is known about how attention to a sensory modality may relate to selection of other features, such as spatial location, in terms of brain oscillations, although it has been proposed that low-frequency modulation (α- and β-bands) may be key. Here, we investigated how attention to space (left ...
متن کاملDirecting attention to locations and to sensory modalities: multiple levels of selective processing revealed with PET.
We used positron emission tomography (PET) to investigate the neural correlates of selective attention in humans. We examined the effects of attending to one side of space versus another (spatial selection) and to one sensory modality versus another (intermodal selection) during bilateral, bimodal stimulation of vision and touch. Attention toward one side resulted in greater activity in several...
متن کاملMultiple foci of spatial attention in multimodal working memory
The maintenance of sensory information in working memory (WM) is mediated by the attentional activation of stimulus representations that are stored in perceptual brain regions. Using event-related potentials (ERPs), we measured tactile and visual contralateral delay activity (tCDA/CDA components) in a bimodal WM task to concurrently track the attention-based maintenance of information stored in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2011